Survival signalling in Alzheimer's disease.
نویسندگان
چکیده
Significant advancements in our understanding of cell-survival signalling in AD (Alzheimer's disease) stem from recent investigations into the metabolism, trafficking and fate of the essential omega-3 fatty acid DHA (docosahexaenoic acid) (C(22:6), n=3). Brain synaptic terminals and neuronal plasma membranes are highly enriched in DHA, and deficiencies in this polyunsaturated fatty acid are characteristic of AD-affected brain. Oxidative stress, targeting phospholipids containing DHA, and age-related DHA depletion are associated with the progressive erosion of normal cognitive function in AD. Current studies support the idea that DHA itself and novel DHA-derived neural synapse- and membrane-derived lipid messengers have considerable potential to modulate cell survival signalling in stressed cultured neural cell models in vitro and in mammalian models of learning, memory and AD in vivo. Key players in this intrinsic rescue system include the alpha-secretase-processed neurotrophin sAPPalpha [soluble APPalpha (amyloid precursor protein alpha)] peptide, the DHA-derived 10,17S-docosatriene NPD1 (neuroprotectin D1), a tandem brain cytosolic phospholipase A(2) and 15-lipoxygenase enzymatic system that biosynthesizes NPD1, and a small family of anti-apoptotic neuroprotective genes that encode Bcl-2, Bcl-X(L) and Bfl-1 (A1). This paper reviews current ideas regarding DHA and the oxygenated DHA derivative NPD1, intrinsically triggered biolipid neuroprotectants that along with their associated rescue pathways, contribute to life-or-death decisions of brain cells during homoeostasis, aging and neurodegenerative disease.
منابع مشابه
p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease
Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of several factors contributing to PD prognosis, the role of p38 MAPKs (mitog...
متن کاملNeurotrophin signalling in health and disease.
Neurotrophins are a unique family of polypeptide growth factors that influence the proliferation, differentiation, survival and death of neuronal and non-neuronal cells. They are essential for the health and well-being of the nervous system. NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), NT-3 (neurotrophin-3) and NT-4 (neurotrophin-4) also mediate additional higher-order a...
متن کاملDerailed Intraneuronal Signalling Drives Pathogenesis in Sporadic and Familial Alzheimer's Disease
Although a wide variety of genetic and nongenetic Alzheimer's disease (AD) risk factors have been identified, their role in onset and/or progression of neuronal degeneration remains elusive. Systematic analysis of AD risk factors revealed that perturbations of intraneuronal signalling pathways comprise a common mechanistic denominator in both familial and sporadic AD and that such alterations l...
متن کاملMetabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling.
Mitochondria generate second messengers, such as H2O2, that are involved in the redox regulation of cell signalling and their function is regulated by several cytosolic signalling pathways. IIS [insulin/IGF1 (insulin-like growth factor 1) signalling] in the brain proceeds mainly through the PI3K (phosphatidylinositol 3-kinase)-Akt (protein kinase B) pathway, which is involved in the regulation ...
متن کاملThe role of genetics in alzheimer’s disease
Alzheimer's disease is a progressive neurological disorder that causes the brain to shrink (atrophy) and brain cells die. Alzheimer's disease is the most common cause of dementia and causes a decrease in thinking skills and social behaviors. Alzheimer's disease is more common in people over 65 years old. The risk of developing Alzheimer's disease and other types of dementia increases with age,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 34 Pt 6 شماره
صفحات -
تاریخ انتشار 2006